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ABSTRACT: This paper presents the verification and initial validation of CgWind, a new, high-
fidelity, large eddy simulation code for wind engineering applications. CgWind utilizes fourth-
order accurate spatial discretizations of the incompressible Navier-Stokes equations on com-
posite structured grids to achieve both high efficiency and resolution without sacrificing the
ability to model complex and moving geometries. Computational models such as CgWind con-
sist of complex numerical algorithms and software whose correctness must be verified prior to
their use as a mathematical model for practical simulations. The process of verification demon-
strates that a numerical model is implemented correctly and confirms the theoretical properties
(stability and accuracy) of the discrete approximations of the continuous mathematical model.
After successful verification, validation then determines the suitability of the mathematical
model to capture the relevant physical phenomenon of problems of interest. Rigorous verifi-
cation has been built into the development of CgWind, and verification of accuracy and con-
vergence has been demonstrated. The code is now undergoing validation by comparison to
experimental data.

1 INTRODUCTION

CgWind is a new, high-fidelity simulation tool designed to
meet the modeling requirements of advanced wind engineer-
ing applications. The tool couples large eddy simulation (LES)
models, based on the incompressible Navier-Stokes equations,
with moving grid techniques designed resolve the flow near
bodies in relative motion such as turbine blades (Chand et al.,
2010). While initially intended for wind energy problems, Cg-
Wind is a useful general purpose wind engineering simulation
tool. Currently under development at Lawrence Livermore Na-
tional Laboratory, CgWind will be a freely available tool for
use by wind engineers, researchers and the general wind engi-
neering community.

Verification and validation of CgWind is a necessary pre-
cursor to its successful use as an actual wind engineering tool.
Verification is the process whereby the algorithms and imple-
mentation of CgWind are shown to be correct. For complex
mathematical models that are applied in complex geometries, verification is nontrivial. How-
ever, CgWind is implemented using the Overture framework, which provides an extensive in-
frastructure for the verification of numerical techniques using manufactured solutions (Chand
and Henshaw, 2007). Rigorous verification is therefore incorporated into CgWind’s develop-
ment process. Once a numerical method is verified, the validation of the mathematical model
can begin. Validation of the code is accomplished using experimental data relevant to wind en-
gineering applications. This talk will present the techniques used to verify CgWind’s numerical
methods and to validate its mathematical models.



2 NUMERICAL APPROACH FOR THE NAVIER-STOKES EQUATIONS

CgWind solves the incompressible Navier-Stokes (INS) equations with a pressure-velocity
formulation and a split-step method where the pressure is computed in a separate step. For a
given domain Ω, with boundary ∂Ω, the governing equations are

ut + (u · ∇)u +∇p− ν∆u− f = 0, t > 0, x ∈ Ω

∆p+∇u : ∇u− α∇ · u−∇ · f = 0, t > 0, x ∈ Ω (1)

with appropriate initial conditions, u(x, 0) = uI(x), and boundary conditions, BF (u, p) = 0.
Here, u = u(x, t) is the velocity, p the pressure and ν the kinematic viscosity. The term α∇·u
in the pressure equation acts as a damping term on the divergence of the velocity. When buoy-
ancy effects are important, an additional temperature equation is added following the Boussi-
nesq approximation as described by Henshaw and Chand (Henshaw and Chand, 2009). The
use of LES turbulence models also adds an additional term to the equations. Previously, ex-
plicit second- and fourth-order accurate schemes have been developed to solve the equations on
overlapping grids (Henshaw, 1994; Henshaw and Petersson, 2003). In this paper we describe
the verification and validation of a new approach that combines high-order accurate compact
schemes with implicit approximate factorization methods. This new method alleviates the small
timestep restriction on high resolution grids imposed by the viscous timescale while preserving
the efficiency of explicit finite difference methods.

CgWind also exploits the composite grid approach, which leverages the computational ben-
efits of overlapping, structured grids to represent complex geometry (Chesshire and Henshaw,
1990). These grids are ideal for the high-order accurate compact discretizations used by Cg-
Wind as well as the matrix-free geometric multigrid algorithm that enables large-scale, high-
resolution computations with realistic geometry (Henshaw, 2005). The memory and CPU per-
formance advantages of high-order accurate methods on structured grids allows CgWind to
perform simulations at spatial resolutions currently unobtainable by many other approaches.
For example, CgWind’s memory footprint for a 3D computation can be as low as 1− 2Gb per
million grid points depending on the number of overlapping grids and their topology. Conse-
quently, high-resolution computations can be performed efficiently even on modest worksta-
tions and clusters.

Currently there are two subgrid-scale models in CgWind: a simple Smagorinsky style dissi-
pation and a new high-order model more compatible with the resolution properties of CgWind’s
fourth order spatial discretization. The high-order model relies on a hyperviscosity whose non-
linear coefficient is related to the local strain rate via the smallest scale estimates of Henshaw,
Kreiss and Reyna (Henshaw et al., 1989). Other LES turbulence models are currently under
development.

3 VERIFICATION

Verification is an essential step in the development of any computational tool. Prior to using
a code that approximates a given a set of equations, such as Equation 1, we must ensure that the
numerical methods are implemented correctly and that their observed properties (stability and
accuracy) match the theory. In the case of CgWind, this verification process tests both the basic
numerical method and the complexities related to the moving overlapping grids, multigrid, and
boundary conditions.

While it is common to verify numerical methods using simple analytical solutions to the
model equations, this approach is often hampered by the approximate nature of such solutions



hmax |ep|∞ |eu|∞ |ev|∞ |∇ · u|∞
6.13e-02 1.17e-02 4.35e-03 4.93e-03 9.36e-02
3.08e-02 7.16e-04 1.68e-04 1.72e-04 5.99e-03
1.54e-02 4.31e-05 1.14e-05 9.52e-06 4.45e-04
7.70e-03 2.91e-06 7.62e-07 6.67e-07 3.43e-05

rate 4.0 4.1 4.3 3.8

Figure 1: A two-dimensional overlapping grid (left) and “twilight-zone” (i.e. manufactured) solution (right).
Errors and estimated convergence rates for a time dependent exact solution are listed in the table where h is grid
spacing and |e|∞ denotes the maximum error norm. The timestep is reduced by a factor of one-quarter for each
resolution so that the time errors scale at the same rate as the spatial errors.

or reduced complexity (i.e. many are one dimensional) needed to arrive at a closed form solu-
tion. In both cases, the performance of the numerical method cannot be verified in the presence
of complex geometry and full dimensionality of realistic problems. In contrast, the method
of twilight-zone, or manufactured, solutions provides a powerful technique for rigorously ver-
ifying the implementation of a numerical method in both simple and complex computational
domains. In this approach, an exact solution is chosen as a function of space and time, for
example

u(x, t) = c cos(πftt) sin(πfxx+ sx) sin(πfyy + sy) sin(πfzz + sz), (2)

where c is a vector of coefficients for each component of the solution vector u. This exact
solution for u can be substituted into the governing equations, and forcing terms can be derived
and added to the equations to ensure that u is an exact solution. The numerical method can then
be applied to the governing equations with the appropriate forcing and the computed solution
compared to the exact solution. These verification tests ensure that the algorithms are imple-
mented properly and that important properties of the method (e.g. order of accuracy, stability,
etc) are preserved. For example, when implementing high-order accurate methods it is easy to
introduce coding or algorithmic errors that produce solutions that are consistent but are not of
the expected order of accuracy. Rigorous verification via manufactured solutions remains one
of the few tools capable of detecting such errors.

Figure 1 illustrates a simple overlapping grid and a manufactured solution on this grid. The
table in Figure 1 shows the estimated fourth-order convergence rates for CgWind’s algorithms
with a 2D geometry and manufactured solution. Figure 2 shows pressure contours on cutting
planes through a 3D, time dependent manufactured solution for a cylinder in a box. This grid
system consists of two grids: one Cartesian grid for the background and one cylindrical grid for
the cylinder. The accompanying table demonstrates the fourth-order accuracy of the numerical
method for the full three-dimensional problem.

Moving grid algorithms present their own unique challenges in the context of verification.
Boundary conditions that preserve both temporal and spatial accuracy are nontrivial to imple-



(a) grid and solution

hmax |ep|∞ |eu|∞ |ev|∞ |ew|∞ |∇ · u|∞
2.94e+00 5.10e-02 6.71e-02 3.56e-02 3.44e-02 1.52e-01
1.47e+00 3.62e-03 4.40e-03 2.19e-03 2.21e-03 2.28e-02
7.36e-01 2.62e-04 3.16e-04 1.44e-04 2.34e-04 1.34e-03

rate 3.8 3.9 4.0 3.6 3.4

(b) convergence rates

Figure 2: Grid, solution and convergence rates for a 3D verification test.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0

hmax |ep|∞ |eu|∞ |ev|∞ |∇ · u|∞
6.84e-02 8.44e-02 1.80e-01 1.51e-01 1.80e+00
3.44e-02 1.72e-02 2.25e-02 2.61e-02 4.63e-01
1.72e-02 7.92e-03 5.49e-03 5.83e-03 1.54e-01
8.60e-03 2.69e-03 1.10e-03 1.39e-03 5.42e-02

rate 1.6 2.4 2.3 1.7
(d) convergence rates

Figure 3: Manufactured solution based convergence rate estimates for the translating cylinder test case. Currently
only 2nd order accurate boundary conditions are implemented for moving grids.

ment as are the algorithms that manage the dynamic grid generation and interpolation required
with bodies in relative motion. Nevertheless, the method of manufactured solutions can still be
incorporated into the solver to test even this challenging case. While only second-order accu-
rate moving grid boundary conditions have been completed, Figure 3 shows the second-order
convergence rates for a translating cylinder and some of the intermediate grids generated during
the computation. Note that this calculation can be performed in several ways. For example, the
cylinder can remain stationary with the background grid “translating” via boundary conditions
specifying the streaming velocity. Alternatively, the background grid can be stationary with
zero velocity while the cylinder moves relative to it. Both cases are tested and yield similar
results, with the moving cylinder results presented in the table.



(a) cylinder grid and x-velocity, t = 700s
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(b) Fourier transform of pressure signal vs
nondimensional frequency (Strouhal number)

Figure 4: Reynolds number 1000 Flow past a right circular cylinder. Note the dominant frequency matches the
experimentally determined Strouhal number of 0.21 marked by the dashed verticle line.

4 VALIDATION

Once it is verified that a numerical model properly approximates the intended mathemati-
cal model, validation can then be performed to demonstrate the suitability of the mathematical
model to represent the physical problem of interest. Generally, validation is performed by
comparing the numerical results with corresponding experimental data that represent the prob-
lems of interest. In this case, CgWind is tested against three cases: the transverse flow past
a right circular cylinder, the time dependent flow past an impulsively started rotating cylin-
der (Coutanceau and Menard, 1985), and the Re = 12000 flow past a steep hill (Ishihara et al.,
1999). The first test case examines the basic fourth order accurate algorithm’s ability to model
resolvable (i.e. low Reynolds number) flows. The second case tests the second-order accurate
moving grid algorithm. Finally, the third case is more directly relevant to wind engineering and
exposes some current limitations of the code.

4.1 3D Flow past a circular cylinder

Figure 4 summarizes the results of a validation test consisting of a right circular cylinder
placed in a freestream flow normal to the cylinder axis. The Reynolds number based on the
streaming velocity and cylinder diameter is 1000. The inflow velocity is U0 = 1; the outflow
condition consists of the equation p+ δ ∂p

∂n
= 0 where δ is the length scale for the domain; and

the remaining boundaries are slip walls.
The Strouhal number, St = ωD

U0
, was computed and compared to the experimentally deter-

mined value of 0.21 (Schlichting, 1979). The flow was simulated to a nondimensional time of
700 and the pressure recorded at a point in the wake 8 diameters downstream of the cylinder.
Figure 4 indicates that the dominant Fourier mode of this pressure signal matches the known
shedding frequency.

A grid with approximately 400k nodes in two components (background and cylinder) was
employed. The calculation required less than three hours of computation on six Xeon 2.2Ghz



(a) streamlines at t∗=4
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(b) x-velocity comparison
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(c) y-velocity comparison

Figure 5: Streamlines and comparisons with experimental data for the Re=200 flow near an impulsively started
rotating and translating cylinder. Solid curves show results for both rotation and translation of the cylinder;
dashed lines depict the rotating cylinder with the freestream imposed via boundary conditions; symbols are the
experimental data. These results are sensitive to the startup time scale.

processors and approximately 1Gb of memory. The minimum amount of memory required per
process appears to be approximately 80GM . Consequently, a single CPU computation actually
requires less memory (about 600Mb); however, such a computation also takes six times longer.

4.2 2D impulsively started rotating cylinder

The Coutanceau and Menard investigation of an impulsively started rotating and translating
cylinder provides an excellent validation case for time dependent calculations of bodies in rel-
ative motion (Coutanceau and Menard, 1985). This flow is parameterized by the the Reynolds
number, Re = U0D

ν
= 200, the translation velocity, U0, cylinder diameter, D, and a nondimen-

sional rotation parameter, α = ωD
2U0

= 0.5 with ω as the angular velocity. The low Reynolds
number of this flow facilitates adequate spatial resolution, even by CgWind’s second-order ac-
curate moving grid discretization. For the comparisons shown, a cubic ramp function was used
that start from U0 = α = 0 and reaches the steady state values of U0 = 1,α = 0.5 at time
0.1. A 2D two grid configuration similar to that shown in figure 1 is used and is adjusted for
the dimensions of the problem. The grid contains 368, 530 vertexes, which ensures adequate
spatial resolution as determined via grid resolution study.

Figure 5 shows the streamlines at a final nondimensional time of t∗ = tU0

2R
= 4 as well

as comparisons of the two velocity components as a function of distance behind the cylinder
for several times. The calculations are performed twice: once with the cylinder rotating and
translating (solid lines in the figure), and once with the cylinder rotated while the translation is
imposed as boundary conditions on the background grid. As figure 5 indicates, both sets of re-
sults are in agreement with the experiment,especially considering the 5% estimated uncertainty
in the experimental data.

Despite being 2D and low Reynolds number, this computation is algorithmically complex.
At each time step the overlapping grid is adjusted for the rigid body motion, interpolation points
are recomputed, and newly exposed points are interpolated.Nevertheless, this calculation was
run with 368, 530 grid points, using 177Mb, and took 747 steps in less than one hour on a single
cpu (Intel Xeon 2.2Ghz) time to complete.



(a) grid near the hill (b) x-velocity contours
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Figure 6: Grid, x-velocity contours and experimental comparison for the Re = 12000 flow past a steep hill. Note
that no wall model was used to account for surface roughness probably resulting in the poor agreement.

4.3 3D Steep hill

Ishihara and Hibi, et al. conducted experiments of flow past a model hill with varying
surface roughnesses that provide data for validation purposes (Ishihara et al., 1999; Meng and
Hibi, 1998). The hill is defined by the profile z(r) = Hcos2( πr

2L
) for r ≤ L; z(r) = 0 for

r > L; where r =
√
x2 + y2, H is the height of the hill (40mm) and 2L is the hill’s width

(200mm). The Reynolds number based on the H is approximately 12000. The domain for our
calculations consists of a box, centered on the hill, of dimensions 28Hx25Hx6H in the x, y and
z axes respectively. Inflow velocity is given by the power law boundary layer profile provided
by Ishihara, Hibi et al, while the hill and lower wall have no-slip (zero velocity) boundaries.
The remaining computational boundaries are outflows with a mixed condition on the pressure
given by the equation p+ δ ∂p

∂n
= 0 where δ is a length scale for each direction.

Figure 6 depicts the results from a calculation with 4x106 grid points on 128 processors.
While qualitatively “correct” in some respects, the results do not match the experiment very
well, particularly in the wake. However, these results should be studied with the caveat that
wall models have not been implemented. Consequently, these comparisons are shown for ill
resolved no-slip boundary conditions. The wall grid spacing was eighteen times larger than the
experimentally estimated roughness scale. Nevertheless, this spacing resulted in very fine grids
near the boundary that, even with the implicit algorithm, required small timesteps and 56 hours
of computer time.

We hope to improve on these results by implementing wall models that accurately account
for surface roughness. In retrospect, it was optimistic to use this case as an initial validation
study due to the aerodynamically rough nature of the flow. A wall model would also obviate



the need for such fine grid spacing allowing quicker turn around on such problems. This case
also highlighted optimization scaling issues within our algorithms that need to be addressed.

5 STATUS AND FUTURE WORK

CgWind is currently under active development. The verification and initial validation results
suggest that the core numerical algorithms are functioning as expected. However, validation
tests, such as the steep hill, indicate the need for more work in phenomenological modeling of
relevance to wind engineering applications as well as further verification. These verification
and validation processes are only the beginning of a continuous effort to ensure that CgWind
provides accurate and useful results. We expect to release the current version of the solver in
the summer of 2011. An older version, along with documentation, (cgIns) can be found at
http://computation.llnl.gov/casc/Overture/.
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